Momentum Quiz Review – Concept Physics

1	Mo	omentum of a system is conserved only whe	n			
1		there are no forces acting on the system.	"C	there are no internal forces acting ont he		
				system.		
	В	the system is not moving.	D	there is no net external force acting on the system.		
2	Suppose a girl is standing on a pond where there is no friction between her feet and the ice. In order to get off the ice, she can					
	A	bend over touching the ice in front of her, then bring here feet to her hands.	C			
	В	walk very slowly on tiptoe.	D	to that in which she wants to go. get on here hands and knees and crawl off		
	_	walk very slowly on aproc.	D	the ice.		
3	Compared to a sports car moving at 30 miles per hour, the same sports car moving at 60 miles per hour has					
	<u>A</u>	four times as much momentum	C	the same momentum		
	В	two times as much momentum	D	half as much momentum		
4	Wł	nat two factors does momentum (p) depend	on?			
		mass and weight	\mathbf{C}	weight and velocity		
	В	mass and velocity	D	mass and acceleration		
5	What type of collision occurs when two objects collide and stick together?					
		completely elastic		elastic		
	В	partially elastic and partially inelastic	D	inelastic		
6	If two golf balls traveling at 2m/s collide, what will their velocity be after the collision?					
	A	0 m/s	C	2 m/s in the same direction they were		
	В	1 m/s in the same opposite direction	D	traveling 2 m/s in the direction they came from		
7	Which has more momentum, a 75,000 pound motor home traveling at 3 mph, or a 3,500 pound car traveling 70 mph?					
	\mathbf{A}	motorhome	\mathbf{C}	both the same		
	В	car	D	not enough information to tell		
8	Two cars, one twice as heavy as the other, move down a hill at the same speed. Compared to that of the lighter car,					
				nuch. four times		
	A B	twice three times	D	ten times		
	D	unce unics	v	ton times		

Short Answer

1	How does momentum effect car crashes? (Give two examples from the video that was watched in class)
2	In the event of car crashes why might it be important for policemen to know the basic concepts of momentum?
3	List two careers that need to know the basic concepts of momentum to help them deal with car crashes?
4	Describe the two types of collisions, elastic and inelastic.
5	Explain the theory of conservation of momentum and give the equation used to solve these problems.
6	Explain what impulse (force times time) had to do with the egg drop lab performed in class?
7	A 70 kg astronaut is space walking outside the capsule when the tether line breaks. As a means of returning to the capsule he throws his 2 kg space wrench at a speed of 14 m/s away from the capsule. At what speed does the astronaut move towards the capsule?
8	A 0.06 kg tennis ball, initially moving at a speed of 12 m/s, is struck by a racket causing it to rebound in the opposite direction at a speed of 18 m/s. What is the change of momentum of the ball?

9	A 0.06 kg tennis ball, initially moving at a speed of 12 m/s, is struck by a racket causing it to rebound in the opposite direction at a speed of 18 m/s. A high speed movie film determines that the racket and ball are in contact for 0.05 seconds. What is the average net force exerted on the ball by the racket?
10	A 92 kg fullback running 5 m/s, attempts to dive across the goal line for a touchdown. Just as he reaches the goal line, he is met head on in mid-air by a 88 kg linebacker, moving at 5.5 m/s. If they become entangled as one mass, with what velocity do they travel? Does the fullback score?
11	A 400 kg truck traveling at 18 m/s collides in an inelastic collision, where the vehicles stick together, with a 150 kg sports car traveling at 29 m/s. What is the final velocity of the two vehicles once they stick together.
12	A tennis ball (2 kg) traveling at 10 m/s collides with a 2 nd tennis ball (2 kg) that is sitting at rest. The collision is elastic with no energy lost. If the 1 st tennis ball comes to a stop after the collision what is the velocity of the 2 nd tennis ball?