Momentum Quiz Review - Concept Physics

1 Momentum of a system is conserved only when \qquad .

A there are no forces acting on the system. C there are no internal forces acting ont he system.
B the system is not moving.
D there is no net external force acting on the system.

2 Suppose a girl is standing on a pond where there is no friction between her feet and the ice. In order to get off the ice, she can \qquad .
A bend over touching the ice in front of her, \mathbf{C} throw something in the opposite direction then bring here feet to her hands. to that in which she wants to go.
B walk very slowly on tiptoe.
D get on here hands and knees and crawl off the ice.

3 Compared to a sports car moving at 30 miles per hour, the same sports car moving at 60 miles per hour has
$\overline{\text { A four times as much momentum }}$
C the same momentum
B two times as much momentum
D half as much momentum

4 What two factors does momentum (p) depend on?
A mass and weight
C weight and velocity
B mass and velocity
D mass and acceleration

5 What type of collision occurs when two objects collide and stick together?
A completely elastic
C elastic
B partially elastic and partially inelastic
D inelastic

6 If two golf balls traveling at $2 \mathrm{~m} / \mathrm{s}$ collide, what will their velocity be after the collision?
A $0 \mathrm{~m} / \mathrm{s}$
C $2 \mathrm{~m} / \mathrm{s}$ in the same direction they were traveling
B $1 \mathrm{~m} / \mathrm{s}$ in the same opposite direction
D $2 \mathrm{~m} / \mathrm{s}$ in the direction they came from

7 Which has more momentum, a 75,000 pound motor home traveling at 3 mph , or a 3,500 pound car traveling 70 mph ?
A motorhome
C both the same
B car
D not enough information to tell

8 Two cars, one twice as heavy as the other, move down a hill at the same speed. Compared to that of the lighter car, the momentum of the heavier car is \qquad as much.
A twice
C four times
B three times
D ten times

Short Answer

1 How does momentum effect car crashes? (Give two examples from the video that was watched in class)

2 In the event of car crashes why might it be important for policemen to know the basic concepts of momentum?

3 List two careers that need to know the basic concepts of momentum to help them deal with car crashes?

4 Describe the two types of collisions, elastic and inelastic.

5 Explain the theory of conservation of momentum and give the equation used to solve these problems.

6 Explain what impulse (force times time) had to do with the egg drop lab performed in class?

7 A 70 kg astronaut is space walking outside the capsule when the tether line breaks. As a means of returning to the capsule he throws his 2 kg space wrench at a speed of $14 \mathrm{~m} / \mathrm{s}$ away from the capsule. At what speed does the astronaut move towards the capsule?

8 A 0.06 kg tennis ball, initially moving at a speed of $12 \mathrm{~m} / \mathrm{s}$, is struck by a racket causing it to rebound in the opposite direction at a speed of $18 \mathrm{~m} / \mathrm{s}$. What is the change of momentum of the ball?

9 A 0.06 kg tennis ball, initially moving at a speed of $12 \mathrm{~m} / \mathrm{s}$, is struck by a racket causing it to rebound in the opposite direction at a speed of $18 \mathrm{~m} / \mathrm{s}$. A high speed movie film determines that the racket and ball are in contact for 0.05 seconds. What is the average net force exerted on the ball by the racket?

10 A 92 kg fullback running $5 \mathrm{~m} / \mathrm{s}$, attempts to dive across the goal line for a touchdown. Just as he reaches the goal line, he is met head on in mid-air by a 88 kg linebacker, moving at $5.5 \mathrm{~m} / \mathrm{s}$. If they become entangled as one mass, with what velocity do they travel? Does the fullback score?

11 A 400 kg truck traveling at $18 \mathrm{~m} / \mathrm{s}$ collides in an inelastic collision, where the vehicles stick together, with a 150 kg sports car traveling at $29 \mathrm{~m} / \mathrm{s}$. What is the final velocity of the two vehicles once they stick together.

12 A tennis ball $(2 \mathrm{~kg})$ traveling at $10 \mathrm{~m} / \mathrm{s}$ collides with a $2^{\text {nd }}$ tennis ball $(2 \mathrm{~kg})$ that is sitting at rest. The collision is elastic with no energy lost. If the $1^{\text {st }}$ tennis ball comes to a stop after the collision what is the velocity of the $2^{\text {nd }}$ tennis ball?

