\qquad

SHOW YOUR WORK. INCLUDE CORRECT UNITS! Enclose you answers in a box. Remember, you must use correct SI units for temperature(use Kelvin!). Information you will need:
Standard pressure is $\mathbf{1 0 1 . 3} \mathbf{~ k P a}$. Standard temperature is $\mathbf{2 7 3 . 1 5} \mathrm{K}$. To convert from
Celsius to Kelvin: $\mathrm{K}={ }^{\circ} \mathrm{C}+273$

Calculate the volume. ASSUME THE TEMPERATURE IS CONSTANT $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

1. What is the new volume when a $100.0 \mathrm{~cm}^{3}$ container at 120.0 kPa is expanded until the pressure is 60.0 kPa ?
2. What is the new volume when a $50.0 \mathrm{~cm}^{3}$ container at standard pressure is expanded until the new pressure is 25.0 kPa ?
3. What is the new volume when a $50.0 \mathrm{~cm}^{3}$ container at standard pressure is compressed until the new pressure is 200.0 kPa ?
4. What is the new volume when a $75.0 \mathrm{~m}^{3}$ container at 230.0 kPa is compressed until the new pressure is 100.0 kPa ?

Calculate the pressure. ASSUME THE TEMPERATURE IS CONSTANT. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

1. What is the new pressure if a $100.0 \mathrm{~cm}^{3}$ container at standard pressure is compressed until the volume is $50.0 \mathrm{~cm}^{3}$?
2. What is the new pressure if a $10.0 \mathrm{~cm}^{3}$ container at 150.0 kPa is expanded until the volume is $50.0 \mathrm{~cm}^{3}$?
3. What is the new pressure if a $20.0 \mathrm{~cm}^{3}$ container at 150.0 kPa is compressed until the volume is $3.00 \mathrm{~cm}^{3}$?
\qquad

Calculate the pressure at a certain depth in fluid.

1. A boy is swimming at a depth of 2.5 meters below the surface of the water what is the absolute pressure he is feeling?
2. A piece of wood is submerged to 3 meters beneath the surface of a salt water pond. What is the pressure being felt from the water above at that point.
3. An object is put 18 m below the surface of the ocean, what is the absolute pressure at that point?

Calculate the missing piece using $A_{1} \mathbf{V}_{1}=A_{2} \mathbf{V}_{2}$

1. Water flows through a pipe that goes from a narrow end $\left(18 \mathrm{~cm}^{2}\right)$ to a wide end $\left(26 \mathrm{~cm}^{2}\right)$. If the water is moving at $4 \mathrm{~m} / \mathrm{s}$ in the wide end, what was its velocity in the narrow end?
2. Water flows through a pipe that goes from a wide end $\left(8 \mathrm{~cm}^{2}\right)$ to a narrow end $\left(5 \mathrm{~cm}^{2}\right)$. If the water is moving at $8 \mathrm{~m} / \mathrm{s}$ in the narrow end, what was its velocity in the wide end?
3. Water flows through a pipe that goes from a narrow end $\left(18 \mathrm{~cm}^{2}\right)$ to a wide end (??). If the water is moving at $4 \mathrm{~m} / \mathrm{s}$ in the wide end and $12 \mathrm{~m} / \mathrm{s}$ in the narrow end, what was the area of the wide end?
