\qquad

SHOW YOUR WORK. INCLUDE CORRECT UNITS! Enclose you answers in a box. Remember, you must use correct SI units for temperature(use Kelvin!). Information you will need:
Standard pressure is $\mathbf{1 0 1 . 3} \mathbf{~ k P a}$. Standard temperature is $\mathbf{2 7 3 . 1 5} \mathrm{K}$. To convert from
Celsius to Kelvin: $\mathrm{K}={ }^{\circ} \mathrm{C}+273$

Calculate the volume. ASSUME THE TEMPERATURE IS CONSTANT $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

1. What is the new volume when a $100.0 \mathrm{~cm}^{3}$ container at 120.0 kPa is expanded until the pressure is 60.0 kPa ?
2. What is the new volume when a $50.0 \mathrm{~cm}^{3}$ container at standard pressure is expanded until the new pressure is 25.0 kPa ?
3. What is the new volume when a $50.0 \mathrm{~cm}^{3}$ container at standard pressure is compressed until the new pressure is 200.0 kPa ?
4. What is the new volume when a $75.0 \mathrm{~m}^{3}$ container at 230.0 kPa is compressed until the new pressure is 100.0 kPa ?

Calculate the pressure. ASSUME THE TEMPERATURE IS CONSTANT. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

1. What is the new pressure if a $100.0 \mathrm{~cm}^{3}$ container at standard pressure is compressed until the volume is $50.0 \mathrm{~cm}^{3}$?
2. What is the new pressure if a $10.0 \mathrm{~cm}^{3}$ container at 150.0 kPa is expanded until the volume is $50.0 \mathrm{~cm}^{3}$?
3. What is the new pressure if a $20.0 \mathrm{~cm}^{3}$ container at 150.0 kPa is compressed until the volume is $3.00 \mathrm{~cm}^{3}$?
\qquad

Short Answer (Remember $\mathbf{P}=\mathbf{F} / \mathbf{A}$)

1. You have been accepted into a boat building competition. You get to pick between two boat plans. Boat A's plans has the dimensions of 10 m wide and 85 m long and exerts 2200 Pa of pressure. Boat B's plans has the dimensions of 3 m wide and 173 m long and exerts 3100 Pa of pressure. In order for the boat to float, the force applied to the water must not exceed $2.0 \times 10^{6} \mathrm{~N}$. Would you pick Plan A or Plan B?
2. If you are standing on one foot and then put both feet down, you have \qquad the force on the ground.
3. If you are standing on both feet and then stand on one foot, you have \qquad the pressure on the ground.
4. A unit of pressure is called a
5. A raft is floating on the water. The bottom of the raft takes up an area of $22 \mathrm{~m}^{2}$. It exerts a force of 847 N onto the water. How much pressure did the raft push on the water?
6. A jack hammer exerts 6000 Pa of pressure onto the concrete. The tip only covers an area of $0.04 \mathrm{~m}^{2}$. How much force does the jack hammer apply to the concrete?
7. The mass per unit volume of a substance is its
